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ABSTRACT

This thesis provides two versions of a digital signal processing (DSP) program

that can be used by an individual interactively. The intended user for this program

is a student taking a digital speech signal processing class at the Naval Postgraduate

School. Nevertheless, the implemented algorithms can be used to analyze any slowly

time-varying signal. One version uses a MS-DOS computer (or IBM-compatible) for

both data handling and for the DSP algorithms. The other version uses the MS-DOS

computer for data handling and uses an Ariel DSP-16 digital signal processing board

for the DSP algorithms. All algorithms are implemented in a non real-time mode. The

program uses the same user-interface software for both versions. The user-interface

software package provides a user-friendly input and output environment.
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I. INTRODUCTION

There exist many computer environments that allow a user to perform digital

signal processing (DSP). Some of these environments require the individual to pro-

gram every step of the desired algorithm. These are typified by high-level program-

ming languages like FORTRAN, Pascal, or C. Other environments provide powerful

built-in functions that can be used by the individual to program the algorithm. This

type of environment is typified by so-called very high level languages such as APL

and Matlab.

One problem that arises from either of these environments is that they all require

programming. Additionally, no common basis for input of the signal nor output of the

results is provided without additional programming. This programming can be quite

time-intensive. In a classroom environment where the purpose is to understand the

theory of the various DSP algorithms and then demonstrate them in the laboratory,

this programming by each individual is not productive.

The objective of this thesis is to provide a DSP program that can be used by

a user and not require programming by that user. The typical user is expected to

be a student who is learning the theory behind the implemented algorithms. The

proposed software is meant for classr ,om use in digital signal processing courses at

this institution, "EC4410-Speech Signal Processing" in particular. Additionally, the

program should be able to utilize an Ariel DSP-16 digital signal processing board in a

pseudo-coprocessor role. These objectives can be subdivided into the following goals:

e Provide a common user-friendly interface that simplifies input and output.
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* Develop a package of algorithms for the host machine and demonstrate one for

the DSP-16 in a non-real time mode that is interfaced from the host machine.

In order to meet the needs of EC4410, the algorithms in this DSP program deal with

analysis of speech signals. However, the program is suitable for analyzing any slowly

time-varying signals.

The remaining part of this thesis addresses these objectives and goals and shows

how they were met. A brief outline of the chapters follows.

Chapter 11 provides background material for understanding the software that

is developed in later chapters. It begins by providing a brief review of the DSP

algorithms implemented. Next it reviews the hardware requirennts of the host

computer and its peripherals. Finally, the chapter covers the layout of the DSP-16

board and the functional layout of the Texas Instruments' TMS320C25.

Chapter III presents the design and development of the user-interface software.

Included in this chapter is a discussion of the software engineering aspects of the

design and the general layout of the input and output functions. The last section

discusses auxiliary functions that do not fall into the other categories.

Chapter IN' deals with the software modules that actually perform the DSP al-

gorithms. The first section discusses the software that allows the PC to perform the

algorithms. The last section discusses the host interface software and DSP-16 soft-

ware. This last discussion deals with the programming and debugging considerations

for the host and the DSP-16.

Chapter V contains the overall conclusions of this thesis. This chapter includes

a discussion of software and hardware limitations discovered in the course of this

research. Additionally, further possible developments are reviewed.

2



II. BACKGROUND

This chapter provides background material covering the digital signal processing

algorithms implemented, the computer system required by the program, a description

of the DSP-16, and a discussion of the TMS320C25 processor used on the DSP-16

svstem.

A. DIGITAL SIGNAL PROCESSING ALGORITHMS

In this section we briefly describe the digital signal processing algorithms that

the program developed here performs. The intention is only to summarize these

algorithms briefly in the following sections; the details may be found in [Refs. 1, 2, 3].

All of these algorithms are assumed to be performed in a non real-time environment.

1. Fast Fourier Transforms

The Fast Fourier Transform (FFT) algorithm implements the discrete

Fourier transform (DFT), given by [Ref. 1., Chapter 8]

N-1

X(k) = , x(n)[WN'nk, k = 0. 1,2,..., N - 1 (2.1)
n=O

where lVg = e- 3(2" /A') and N is a power of 2. The WN term is referred to as the twiddle

factor. The FFT algorithm can more easily be viewed as an expanding butterfly where

the representation for a butterfly is given in Figure 2.1. However, in order to use this

method, the input or the output must have a bit-reversed sorting performed. This

is accomplished by indexing the values from 0 to N - 1, then the binary value of

the index is reversed. The values stored in the original position and the bit reversed

position are exchanged. This implementation, which is called decimation in time, will

assume that the input values are bit reversed. Figure 2.2 shows a formulation for the

3



xj,, (n) 11x..t (n)

WN -1

Figure 2.1: Butterfly representation

FFT calculation. The outer loop determines that there will be N, = log 2 N stages

performed. The middle loop determines for each stage how many 2-point FFTs

must be performed. The inner loop performs the 2 N - I butterflies. The function

Butterfly has three arguments. The first argument corresponds to xi,(n), the second

to xin(m), and the third to WN as given in the butterfly representation ( Fig. 2.1).

for s = 1 to log 2 N
q =2
77 = 2 s-1

for k=0to (N/q-1)
for n =0 to (m - 1)

Butterfly( x(k * q + n), x(k * q + n + m), 14(n, q) )
end for

end for
end for

Figure 2.2: Multi-Stage FFT Calculation
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2. Time Domain Algorithms

The time domain algorithms are straightforward to develop. Additionally,

the window function w(n) in the following equations will be assumed to be a rectan-

gular window with a magnitude of one and a size of N points.

The first of the time domain functions is the short-time energy, given by

En = E [x(m)w(n - m)]2. (2.2)

By applying the rectangular window to Equation 2.2, it can be simplified to

m-N+1

E, = : x(m) 2 . (2.3)
m n

The second algorithm is the short-time magnitude function

A'I,= I x(m) I w(n - m). (2.4)

The rectangular window can be applied to Equation 2.4, to give

m-N+1

M, = : 1 x(m) I. (2.5)
m~n

The third algorithm is the short-time zero-crossing function

Z= I sgnfx(mjj -- 1)] w(I - m) (2.6)

where 1 f 1 if x(n) _ 0 (2.7)

sgn x(n) =~ -1 if x(n) < O.

By applying the rectangular window to Equation 2.6, the algorithm can be simplified

to
Z m-=y I sgn[x(m)] - sgn[x(m- 1)]I (2.8)

zn=z 2

The fourth formula implemented is the short-time autocorrelation given by

R,,(k) = x(n + m)x(n + m + k)[w(m)w(k + m)] (2.9)

, I -



where k is lag of the autocorrelation and it indicates the offset between the two values

being correlated. When the rectangular window is applied to Equation 2.9, we have

the final form
N-k-1

Rn(k)= x(n+ m)x(n+ m + k). (2.10)
m=O

The fifth and last algorithm is short-time 3-level autocorrelation

N-k-i
& (k) = 1: y(n + m)y(n + m + k). (2.11)

m=O

In addition to the lag variable k, this algorithm has a variable labeled L, the clip

level. If the sample value does not have a magnitude greater than the clip level, the

sample value will be set to zero. The clipping is performed as follows

1 if x(n)>L,
y(n) -1 if x(n) < -L, (2.12)

0 otherwise

With Equation 2.12, Equation 2.11 can be reduced one step further to eliminate all

multiplications. The result is

0 ify(n+m)=0or y(n + m + k)= 0

y(n+m)y(n+ +k)=y (n+m)=y(n+m+k) (2.13)
-1 otherwise.

3. Linear Predictive Coding Algorithms

This section presents three types of linear predictive coding (LPC) algo-

rithms. Here we summarize these algorithms to gain an insight into implementing

them in software. The details are available in the literature (Refs. 2, 3].

The first of these algorithms is Durbin's method and is also referred to as

the Levinson method [Ref. 3, pages 202-210]. An initial calculation that must be

performed prior to applying this method is the computation of the autocorrelation

of the input sequence where the lag equals the desired order of the predictor. The

results of the autocorrelation will be available as a sequence R(0) ... R(p) where p is

the desired order of the filter. The procedure is as follows:
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1. Initialize: Ao(z) = 1, Eo = R(O).

2. For s = 1: p at stage s, the filter A,(z) and error E8 are available.

3. Compute the "reflection coefficient" 7y+1 using

A, (2.14)

where A 8 = =o a,,iR(s + 1 - i).

4. Determine the new polynomial A.+,(z) using

1 1 0
a,+,a, a,s

as,2 - t+ 1 as,-i (2.15)

a,+,, as,,, a,, 1

a.+1,8+1 0 1

5. Update the mean-square prediction error E8+1 using

E+1= (1 - y'+1)E8 . (2.16)

6. If s = p, then stop. Else s = s + 1 and loop to step 3.

The next algorithm is Burg's method [Ref. 3, pages 259-261]. This algo-

rithm uses the input data sequence {xo, xl,..., xN-1I} without having to compute the

autocorrelation function. The variable p is the desired final order of the predictor.

The procedure is as follows:

1. Initialize: Ao(z) = 1, e+(n) = eo(n) xn, for 0 < n < N - 1 and

1O N-i1
1 g- . (2.17)

Nin0

2. For s = 1 : p at stage s, the filter A,(z), error E8 are available. Set s = s + 1.

7



3. Compute the "reflection coefficient" - using

2E-' -'_ "n)- (n--1)
E'- [e' (n)+e - ) (2.18)Z..n=s $_ $_ " s-

where e+(n) and eo(n) are referred to as the forward and backward prediction

error, respectively.

4. Determine the new polynomial A.(z) using

1 1 0
a8,1...-, 1  a 8.-1 ,8 .- 1

a, 2  as- 1 ,2  a.-l,,-2 (2.19)

aass-1  a-L,,- 1  JL 1
a8,, 0 1

5. Update the errors e+(n) and e-(n) for s < n < N - 1 using
e,+(n) - e,_(n) - -ye_,(n - 1) (2.20)

e (n) e - 1) e+  (2.21)

6. Update the mean-square prediction error E, using

E ( - Y2)E.,-. (2.22)

7. If s = p, then stop. Else loop to step 3.

The last of the three algorithms is the covariance method [Ref. 2, pages

407-411]. Consider that the data sequence to be analyzed is {xo, xl,. .. ,XN-}. We

first need to compute the pth order correlation matrix R, where p is the order of the

predictor. Since R is symmetric, we only need to compute the lower triangular part

of R as follows
Roo 0 0 0 ... 0
Rio Ri 0 0 ... 0
R2o R21 R 22  0 ... 0
R 30 R 31 R 32 R 3 3 ... 0 (2.23)

Rpo Rpi Rp 2 RB3 ... Rpp

8



where Rij = M-4 =x(I + m)x(j + m). The complete matrix can be obtained by

copying the elements below the main diagonal onto the entries above it. Note that

the correlation matrix R obtained above is symmetric but not Toeplitz. The second

step in this procedure is to compute the diagonal matrix D and the lower triangular

matrix V as follows:

1. Initialize d, to R11 , set j = 1.

2. Solve for Vi where 1 < j i - I using

v,=Rij - Ej- V kdkkbik
Vdj k=1 (2.24)

djk

3. Set i = i + 1, solve for dii using

i-1

di - Vi'dkk. (2.25)
k=1

4. If i > p stop, else return to step 2.

The above step is referred to as Cholesky decomposition [Ref. 2, page 407]. In

the third step, we compute the terms of the predictor polynomial by the following

procedure:

1. Set X 1 = RI 0, i = 2.

2. Compute Xi for 2 < i < p using

i-1

X= Rio - _VoX j . (2.26)
j=I

3. Set Ai = Xi/d, i = n-1.

I | $| |9



4. Compute Ai for n - 1 > i > 1 using

Ai = d E ViAj. (2.27)
j~+l

The last step in this algorithm is to compute the error terms. This is accomplished

as follows (for 0 < i < p)

k=i d (2.28)

B. PC AND PERIPHERALS HARDWARE

This section provides a brief description of the required and optional hardware.

" Any computer that is running PC-DOS or MS-DOS version 3.0 or above will

be able to use this program. The software should also work on versions of this

operating system below 3.0 as well, but has not been tested.

" A math coprocessor of the 80x87 family is supported and preferred, but not

required for this software.

" A hard disk is also preferred, but not required.

" The computer must have a viaeo adapter and monitor that can operate in

CGA, EGA, VGA, or Hercules graphics mode. Olivetti versions of these modes

are also supported. If a Hercules adapter is being used, then the program

MSHERC.COM must be executed before using the DSP program [Ref. 4, page

204].

* If a printout of the screen plots is desired, then an Epson-compatible dot ma-

trix printer or HP LaserJet printer is required. Other printer types are not

supported. The software can easily be modified to accommodate other types of

printers however.

10



* If the DSP-16 version of the program is desired, then the Ariel DSP-16 board

must be installed; this requires one full-size PC expansion slot.

C. DSP-16 BOARD

The DSP-16 board is reviewed in this section. This is followed by a discussion

of the Texas Instruments TMS320C25 processor that is installed on the board. The

functional layout of the DSP-16 board is shown in Figure 2.3. (For complete details

on the board layout, see [Ref. 4, Chapter 6].) This figure shows the main components

and busses. In the non real-time mode, the sample rate timer, the analog-to-digital

converter(ADC), the digital-to-analog converter(DAC), and the 256K word sample

buffer are not required. Though these items are not used by this program, they are

initialized by the program. It needs to be pointed out that the TMS320C25 cannot

use the sample buffer RAM to hold the program instructions or the data values. The

sample buffer is only used to store samples received by the ADC or that will be sent

out to the DAC. A description of the remaining items follows.

1. Interface to Host

The interface between the board and the host PC is via a PC expansion

slot. The expansion slot pins on the board side are connected to the address lines,

the host interrupt, the data lines, and the control register. The address bus of the

PC is connected to the address lines on the board. Note that the PC uses 20 address

lines while the board uses 14 lines. The PC is a byte-addressable computer whereas

the board is a word addressable device. Therefore, the PC can address 64K bytes but

the board can only address 16K words. The PC data bus connects to the data lines

on the board. This is the standard eight-bit-wide bus on both sides. This apparent

problem of addressability and storage is solved by the onboard circuitry. During data

transfers to the board, the onboard circuitry will take two bytes from the eight bit

11



Sample
DAC ADC Rate

I I f i...............
Timer

Serial In

256Kword Host Data Reg ..

Sample TMS 320C25 [ - ios Reg.

BufferBuferAddress "{Status Reg I ..

16K w ord ......................................

Program/ Address Host Lt

Data Ram Lines Interrupt ine

16-bit Data Bus

............... 14-bit Address Bus

.8-bit Data Bus

Figure 2.3: Ariel's DSP-16 Board
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data bus and transfer them via the onboard 16-bit bus to the onboard storage location

specified by the address bus. To achieve the data transfer from the board to the PC

the reverse procedure is followed.

In addition to the bus interface, the control register and host interrupt can

interact with the PC. The control register can be signaled by the PC via an interface

pin to hold the TMS320C25 processor. This feature allows the host PC to transfer to

the program/data RAM as if it were native to the PC RAM. The ability to interrupt

the host PC from the board is not used by this program. However, this is a feature

that may be useful in a real-time mode.

2. Program/Data Ram

The 16K words of Program/Data RAM is a significant aspect of this board.

The programming instructions and the data for the algorithm to be executed must

be located here. If this is not possible, then the use of program overlays must be

considered. In order to use this RAM for data, the GREG register (see section D of

this chapter) must be set. By adjusting the setting of the GREG register, the RAM

can be divided into varying ratios of program space to data space. Table 2.1 gives

the allowable settings. A review of this table shows that the minimum program space

is 8192 (decimal) words thereby giving 8192 words of data space. The beginning

address for the data space from the TMS320C25's point of view is EOOOH, but from

the host computer's point of view it is still 2000H. Additionally, note that if the

program requires 8193 words for storage, then a setting of FO must be used, thereby

losing 4095 words of data storage.

3. Registers

The DSP-16 board has three special use registers. The Status Register

contains the host I/O port flags. The TDR flag (bit 1) is set when the board processor

writes to the host bus. The HDR (bit 0) is set when the host writes to the board.

13



The bits are cleared by the appropriate device reading the transferred data. The host

data register is used to transfer one word from the board (i.e., two bytes at a time to

the PC) without placing the board processor on hold. The reverse can also be done.

For either transfer to work however, the processor must poll the status register to

check the status of the transfer. The last register is the control register which has

already been mentioned.

D. TMS320C25 DSP PROCESSOR

In this section, the Texas Instruments TMS320C25 will be reviewed. This pro-

cessor is the controller for the DSP-16 board. The functional layout of the processor

is shown in Figure 2.4. This layout shows only certain components of the processor

that need to be understood for this program and is not meant to be complete. The

reference for this section and the processor layout is Reference 6, Chapter 3.

1. Auxiliary Registers

The first cluster of registers on the left of Figure 2.4 make up the auxiliary

register group. ARO through AR7 are the actual auxiliary registers. These registers

are 16 bits wide; therefore the largest number that can be represented is 65,536. All

numbers in these registers are assumed to be positive values. Below the register stack

is the ARAU. This is the auxiliary register arithmetic unit. All arithmetic performed

TABLE 2.1: GREG SETTING (VALUES IN HEX)

GREG Effective Actual location in RAM
Value Data Location (max range 3FFF)

EQ EOOO-FFFF 2000
F0 FOOO-FFFF 3000
F8 F800-FFFF 3800
FC FCO0-FFFF 3C00
FE FE0O-FFFF 3E00
FF FFOO-FFFF FF00
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Figure 2.4: TMS320C25 Functional Layout
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on an auxiliary register is done by this unit. The last component of this group is the

ARP. This three-bit-wide register, known as the auxiliary register pointer, is used to

select the current auxiliary register.

The auxiliary registers are useful as pointers to data values or as counters.

In the pointer mode, the registers are used in the indirect addressing mode. With

indirect addressing, instructions that use the indirect mode can use the value pointed

to by the current auxiliary register as one of its operands. This addressing mode

is very powerful. With this mode, the pointer can be post-incremented or post-

decremented. The size of the change can be one or a value stored in ARO. The

arithmetic used in the ARAU can utilize normal carry or reverse carry. The reverse

carry allows the bit reversal indexing of FFT values to be performed very rapidly.

In the counter mode, the register can be used to the count the number of times an

operation is performed.

2. Onboard RAM

On the right of Figure 2.4 there are three blocks of RAM. Block BO can

hold 256 words of either program or data. During program execution this block of

RAM can be used either as program RAM or as data RAM but cannot be both types

simultaneously. An instruction can be used at runtime to change its status. The

other two blocks. BI and B2, can only be used as data RAM. Block B1 can hold 256

words while block B2 can hold 32. Since all three blocks are onboard the processor,

program execution is faster when all data are located in one of these blocks.
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3. Registers

The T register, known as the temporary register, is 16 bits wide. The

main use of this register is to hold one of the operands of a multiplication operation.

The P register, also called the product register, is 32 bits wide. The results of a

multiplication operation are stored here. The GREG register, which stands for global

memory allocation register, is eight bits wide. It is used to divide the 16K words of

RAM into program and data segments.

With an understanding of the algorithms, the host computer system. and the

DSP-16 board that this program utilizes. we are ready to discuss the software de-

velopment. The first area to look into is the software modules that provide the user

interface. These are discussed in the next chapter.
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III. USER INTERFACE SOFTWARE

This chapter discusses the software modules that comprise the user interface

package. This package include the generic module components, the input/output

software, and the auxiliary software. The software packages written for this program

use the C language-specifically Microsoft QuickC, Version 2.0. The user manu-

als that come with this software can be referenced for language constructs and the

standard function library [Refs. 5, 6].

A. MODULE COMPONENTS

This program incorporates several aspects of software engineering. The most

notable ones are modularity in the user-interface package and commonality among

the various modules that make up the package. For example, some of the modules

are for the main loop, for the FFT calculations, for the LPC calculations, for the

time domain calculations, etc. Within each module, there are functions that perform

operations common to functions in the other modules. These similar functions differ

in that they use different data sets. This commonality of functions greatly simplifies

the development and debugging of software. Other aspects of software engineering

can also be noted. A function that is needed by only one particular module is located

within that modtle apd is therefore not known to another module. Variables that

are needed by only one module are declared only within a function in that module.

Some of the common type of functions within the modules are discussed below.

The main type of selection control module is based on a switch statement. A

generic example is given in Figure 3.1. The function is called without arguments. The

while loop is always true, therefore the only exit from this loop is the user selection of
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int Example( void)

{
int iExCur = 0;

Initialize any variables needed by the function.

while( TRUE )
{
iExCur = DisplayMenu( mnuEx, iExCur);

if( iExCur )
{
GetExampleData( ... )

Initialize local variables based on user input.
I

/* Branch to menu choice. */
switch( iExCur )

{
case EXQUIT:

_setvideomode( _DEFAULTMODE);
return FALSE;

Enumerate all the cases available.
I

Figure 3.1: Generic Control Module
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"quit". The function DisplayMenu puts a menu on the screen and returns the value of

the option the user selected. If the selection was other than quit, then a call is made

to the GetExampleData function to get user data. These functions are explained in

greater depth in section B of this chapter. The return value from DisplayMenu then

selects the corresponding case statement which executes the requested action. When

the requested action is complete, the program returns to the while loop and the loop

repeats. Another type of control loop is the kind used for selection of the output

display.

The output display functions have a name of the form Plot* where "* represents

a unique name. A generic example of this type is given in Figure 3.2. A comparison

of this example with Figure 3.1 shows many similarities. However, there are notable

differences between them. The first observation is that the generic output control

module has arguments in the function call. A second difference is that there is no

need for a GetExampleData function in this module. Once inside a case construct,

the general layout is to initialize any variables needed, allocate memory, initialize plot

labels, call plotting function, and free allocated memory. A benefit of this layout is

that any problem associated with an output display is limited to a small area of code.

The last common type of module is the one that controls the calculation of

results. These functions have a name of the form Do* where "*" represents a unique

name. A generic example of this type is given in Figure 3.3. This function is en-

tered with the information needed for the calculation stored in a C "structure". As

information to perform the desired calculation is needed by steps within the function

the members of the structure can be accessed to provide the data. The tasks of this

function are to allocate needed memory, to calculate the desired algorithm, to call the

appropriate output display function, to save the results to the output file, and then

to free allocated memory. Functions of the type PlotExample and SaveExampleData

20



int PlotExample( ... )
{
int iCur = 0;
LABEL Label;

Initialize any variables needed by the function.

while( TRUE)

{
iCur = DisplayMenu( mnuExPlot, iCur);

if( iCur )
/* Branch to menu choice. */
switch( iCur )

{
case EXPLOTQUIT:

_setvideomode( _DEFAULTMODE);
return FALSE;

case PLOTCOEFF:

Initialize any variables needed by the case statement.
Allocate needed memory dynamically.

Label.title = pszPlotLabel[EXTITLE];
Label.xaxis = pszPlotLabel[EXXAXIS];
Label.yaxis = pszPlotLabel[EXYAXIS];

PlotOneCont( ... );

Free dynamically allocated memory.

break;

Enumerate all the remaining cases.
}

Figure 3.2: Generic Output Control Module
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void DoDurbin( struct ... )
{

: Initialize any variables needed by the case statement.
Allocate needed memory dynamically.

CalExample( ... );

PlotExample( ... );

SaveExampleData( ... );

: Free dynamically allocated memory.

return;
}

Figure 3.3: Generic Calculation Control Module

are explained in greater depth in Section C. of this chapter. Figure 3.4 gives a flow

chart of how these components are jointed together to provide the user interface.

B. INPUT COMPONENTS

The underlying functions for the input components are contained in Fileutil.c

and Scrinpt.c. These libraries encapsulate the machine-dependent file system and the

video calls, respectively. The concept of isolating machine-dependent functions from

the main core of the program is another aspect of software design that is very useful.

When these libraries are available, machine-independent C language function calls

can be used to manipulate files and display different video options.

In section A of this chapteK, the function DisplayMenu was used in order for the

user to select one of several options. This function is located in the Scrinpt.c library.

The input arguments to this function are an array of structures of type ITEM and

an integer value. This structure is defined in the header file Scrinpt.h. An example
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Figure 3.4: User Interface Module Flow Chart
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of a structure of type ITEM is given in Figure 3.5. The structure contains two fields

for each selection. The first field identifies which character position in the selection is

the hot key. A hot key is a key or combination of keys that selects a predetermined

struct ITEM mnuEx[] =

{ /* Highlight Char Pos */
0, "Quit", /* Q 0"/
0, "Select 1", /* S 0"/
3, "Select 2", /* 1 2"/
0, NULL

Figure 3.5: Example of an Array of ITEM Structure

action. In this case that action is a menu selection and must be unique for each

possible menu selection. The second field gives the character string to be displayed

for that selection. The integer value controls which selection will be the default. The

last entry in the array must be NULL to signify that the last entry in the structure

has been reached. In the example, the first selection would be Quit and the hot key

is "Q". The desired selection can be made in one of two ways. The first method

is to press the desired hot key. The second method is to use the up/down arrow

keys to highlight the desired selection and then press the "ENTER" key. At this

point the function will return the index of the selection to the function that made the

call. Figure 3.6 represents the appearance of the screen if the DisplayMenu function

was called with the first argument mnuEx[] ( note that [] is the C notation for an

array) and the second argument zero. The next function that will be needed for input

module is one that accepts the input data.

The purpose of the functions that have the naming convention of Get*Data,

where "" is a unique name, is to accept the user entered values. The general organi-

zation of this function is given in Figure 3.7. This type of function has one argument
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Quit
Select 1
Select 2

Figure 3.6: Example of a Selection Menu

for each question that is to be asked and can have additional arguments if needed.

There are four types of input functions that can be used from within a data input

function. They are listed in Table 3.1 together with the kind of data that can be en-

tered and the structure type used by the function. These structure types are defined

in Scrinpt.h. All of the input functions display a default value that can be accepted

TABLE 3.1: INPUT FUNCTION TYPES

Function Entry data Type [Input Structure

InputString Character string ISTRING
InputChar Character ICHAR

InputInt Integer IINT
InputFloat Float IFLOAT

by pressing "ENTER" or accept a new value which can be entered as desired. The

integer and float function can be defined to check the entered value in one of four

ways. The entered value can be checked against a value range, a minimum value, or

a maximum value or not checked at all. The general layout of this type of function

is as follows:

" Initialize si.ihieght.

" Call the function InitInputForm to setup the entry screen.

* Use PrintAt to output the title of input form.

" Save any values from the input structure that need to be changed for this input.

Change default values, if necessary.
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BOOL GetExampleData( ITITLE *iTitle, IINT *ilntl, ..

int itempi ,itemp2;
long bgColor; /* Screen color, position, and cursor *
struct rccoord rcCursor;

Initialize any variables needed by the case statement.

si.ihieght =set equal to number of input lines;

InitlnputForm( &bgColor, krcCursor);

PrintAt ( iTitle->row, iTitle->col, iTitle->achTitle, mnuAtrib.fgBorder)

itempi = ilntl->iMin;
itemp2 =ilntl->iMax;
ilntl->iMin =2;

ilntl->iMax =1000;

Inputlnt( ilnti )

ilnt2->iMin =itempi;

ilnt2->iMax =itemp2;

Add function calls for each input.

Closelnput Form ( bgColor, rcCursor);

return FALSE;

Figure 3.7: Example of a Data Input Function
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* Call one of the four input functions.

* Restore default values.

* Repeat last three steps for all input questions.

* Call function CloseInputForm to close out the entry form.

C. OUTPUT COMPONENTS

The underlying functions for the output components are contained in the li-

braries Cgraph.c and Dspplot.c. The Cgraph.c library encapsulates the machine

dependent graphing functions for the video and printers. The Dspplot.c library pro-

vides a function that controls the video plotting and the printer plotting, if a printer

is attached. The Dspplot.c library contains two plotting functions. One function

PlotOneCont does continuous line plotting; another called PlotOneDisc does discrete

point plotting. The PlotOneDisc is not used in this program, but is available if needed

later.

The function PlotOneCont was initially mentioned in section A of this chapter.

This function has five arguments. The five arguments are an array of x-axis points,

an array of y-axis points, the number of points in the arrays, a structure containing

the label for the plot, and a boolean value to indicate if the data is normalized. The

points of the two arrays are (x,y) pairs. After the plot is displayed and if a printer

is attached, the user may choose to print the screen to the printer. The user may

accept the default response of No or press "Y" to print. If no printer is attached, the

response will be "Press any key to continue". Figures 3.8 and 3.9 give examples of

the HP LaserJet and Epson output, respectively. The aspect ratio of the output and

the screen are different due to the difference between the aspect ratio of a pixel and

a dot on the two different printers.
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Figure 3.9: Epson Output with 65% Reduction
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The development of Cgraph.c is not mentioned here in detail since the software

is not central to the main objective. There are module-dependent functions that save

output results to a file. A generic example of that type is discussed next.

An example of a generic function that saves the results to a file is given in

Figure 3.10. The form of the function name is Save*Data where "*" is a unique name.

Since this type of function is algorithm type dependent, these function are located in

the individual user interface modules. The first argument to a function of this type is

a pointer to a structure of type OPENFILES. This structure is declared globally and is

initialized by other functions. The structure EXAMPLE contains information unique

to a particular algorithm. The body of the function is a straightforward example of

the use of the fprintf function in C.

void SaveExampleData( struct OPENFILES *pof, struct EXAMPLE *pex, ... )

{

: Initialize any variables needed by the function.

fprintf( pof->Output, "Example Method Results\n\n");
fprintf( pof->Output, "Source: %s\n", pof->InName );
fprintf( pof->Output, "Sample Freq: %5.2fKHz Window Size: %4d\n",

pof->SampFreq, pex->WinSize );
fprintf( pof->Output, "Start Sample: %5d Filter Order: %2d\n\n",

pex->WinStart, pex->FilterOrder );

Print output results for this algorithm.

fprintf( pof->Output, "\n\n\n");

return;
}

Figure 3.10: Example of a Data Save Function
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D. AUXILIARY FUNCTIONS

The last area that needs to be addressed in this chapter is the auxiliary software

packages that do not fit into any of the other categories. There are two modules of

this type. The first of these modules is Dspconv.c. This group of functions converts

a DSP-16 binary data file to a DSP-16 ASCII file and vice-versa. The next group of

functions is Dspdata.c. This group obtains the name of the input data file, the output

data file, and the sampling frequency of the input file. With this file information

obtained, the input data is read into an array and the output file is open for writing.

These two modules use the same method for input and output described in sections B

and C of this chapter. The next module to be discussed is one that contains functions

used by many different modules.

The library of general use functions is contained in Dspgen.c. Functions were

placed in this module if the function was short and could be used 'by several different

modules. These functions are typically ten lines or fewer in length, are straight

forward, and are self explanatory. The last module that is auxiliary to the program

is Complex.c. This provides functions that perform operations on complex numbers.

This group of functions is needed because complex numbers are not native to the C

language as they are in FORTRAN. The last kind of function to be covered are those

that are unique to a module.

Within each module there are functions that are only called by other functions

in that module and are not of the type discussed in sections A, B,or C of this chapter.

In this case, the functions are provided at the end of the source file for that module

and are typically less than half a page long.
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IV. DSP SOFTWARE

This chapter discusses the software packages that are used by the PC and the

DSP-16 to perform the algorithms. These packages include the PC calculation mod-

ule, the host PC to DSP-16 interface module, and the TMS320C25 assembly module.

The software written for the PC side of this program use the C language-specifically

Microsoft QuickC, Version 2.0. The software package for the DSP-16 uses Texas

Instruments assembly language and Ariel assembly directives [Refs. 4, 7, 8].

A. PC CALCULATIONS

1. FFT

The implementation of steps given in section II.A.1 is as follows. Reference

1. pages 510-512 gives the pseudocode for the bit reverse algorithm and butterfly

calculation. This pseudocode was translated into two C language functions. The

functions were verified for correctness by comparing results from this program to

results from Matlab. The C function CalFFTDSP contains both of these procedures.

Within the function DoFFTMultiple is the control loop that offsets the input sequence

in time and performs the FFT on the ncw input sequence.

2. Time Domain

The five algorithms described in section II.A.2 are easily implemented in

C. The summation required can be achieved by a for loop construct. Table 4.1 cross-

references the algorithm to the corresponding C function. Each of the functions were

verified for correctness by comparing the results with results from Matlab.
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TABLE 4.1: TIME DOMAIN FUNCTION CROSS-REFERENCE

Algorithm Function

Short-Time Energy CalSTEnergy
Short-Time Magnitude CalSTMag
Short-Time Zero Crossing CaiZeroX
Short-Time Autocorrelation CalAutoCorr
Short-Time 3-Level Autocorrelation CalSTAutoCorr3Lvl

3. LPC

The functions to implement Durbin and Burg methods [Ref. 3, pages 554-

555,564] were developed to conform with dynamic memory allocation procedures.

These functions were verified by comparing the results from the functions to results

given in Ref. 3, pages 209-210,261. The covariance method was implemented in C

by carefully following the step-by-step procedure given in section II.A.3. The results

of this function were compared against the other two functions. Table 4.2 cross-

references the algorithm to the corresponding C function.

TABLE 4.2: LPC FUNCTION CROSS-REFERENCE

Algorithm Function
Durbin Method CalDurbin
Burg Method CalBurg

Covariance Method CalCovariance

B. DSP-16 AND INTERFACE SOFTWARE

The first area to be covered in this section is the programming of the DSP-16

system using assembly language programming. This is followed by a discussion of the

PC software that interfaces the PC to the DSP-16.
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1. DSP-16 Calculations

The first item that needs to be understood about the arithmetic on the

TMS320C25 is the number format. The processor performs only integer arithmetic

as a native operation. If the processor is to perform arithmetic at its maximum

throughput., then integer type numbers must be used.

To meet the integer arithmetic requirement, Texas Instruments uses a num-

ber representation called the Q format. This format allows floating point numbers to

be conveniently represented as integer type numbers. In this case, the integer type

refers to a 16 bit representation. The most common Q format is Q15. In this format

any floating point number x, where -1 < x < 1, can be represented as an equiva-

lent 16 bit number. In the program that was developed all samples are normalized

to fall in the range of [-1, 1), and therefore conversion to the Q15 format is not a

problem. Any number, n, can be converted to a QX format, where X a is number

in the range [0, 15], by multiplying n by 2X . The number, x, must be in the range

[- 2 (6-x), 2 (16-x)) and if x = 2 (16-X), then it is stored as 7FFFH. Therefore in this

case, the method used to convert to the Q15 format is to multiply the floating point

number by 215 with one exception. If the floating point number is 1, then it is stored

as 7FFFh. This is the maximum positive number that can be stored as a 16-bit

twos-complement number and the corresponding Q15 format number is 0.999969. To

convert from Q15 to a floating point number, we divide the Q15 number by 2's.

The next point about the Q15 format that must be understood concerns

multiplication. When two 16-bit Q15 numbers are multiplied and stored in a 32-bit

register, the result is in the Q30 format. If the upper 16 bits of the result are saved,

then the saved result is a Q15 number that has been divided by two [Ref. 8, pages

76-77]. This scaling insures that an overflow will never occur, but each time this

procedure is performed one bit of precision is lost. This is an important point to
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note. As a consequence, each stage of a FFT automatically loses one bit of precision.

For example, a 1024 FFT will only have 5 bits of precision in the end result.

The next several sections illustrate the programming techniques that can

be used to program the TMS320C25 These techniques can be used in combination

with each other and with other instructions to implement the desired algorithms.

a. Calculation Selection

The same basic calculation control mechanism is used by all the as-

sembly programs. Figure 4.1 is a section of the code from the time domain calculations

that illustrates the principle. The TDOMTBL is stored within the program code and

is a jump table to the beginning instruction for each algorithm. During the initializa-

tion of the program, the jump table is moved to data RAM and the storage location

MLOOPCONT is set to zero. The control loop is from the label MLOOP to the

B MLOOP instruction (the last line in Figure 4.1). It works by first checking the

memory location MLOOPCONT. If the contents are zero, then the program branches

back to MLOOP and the value is checked again. If the memory contents are not zero,

then we add the value at MLOOPCONT to the beginning value of the jump table.

This value is the memory location in the jump table that holds the branch address

of the desired algorithm. After retrieving the value at that memory location, the

program branches to the algorithm. When the algorithm is complete, program exe-

cution returns to this point. After the program returns from the algorithm branch,

the memory location MLOOPCONT is set to zero. The control loop now signals the

PC that the algorithm is complete by setting TDR. Since the bottom of the control

loop has been reached, the control loop branches to the beginning of the loop and

waits for the value of MLOOPCONT to change.
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TDOMTBL: DW 0
DXV ENERGY
DW MACIT
DW ZEROC
DW AUTOC
DW LEVLAC

ENTRY POINT: initialization.

INIT: DINT ;redundant but safe

LRLK AR7,JMPTBL ;move jump table to data RAM
RPTK 5
BLKP TDOMTBL,*±

LRLK AR7,MLOOPCONT;
SACL *;MLOOPCONT set to zero

MLOOP: LRLK AR7,MLOOPCONT;if MLOOPCONT zero, then busy idle
ZALS *

BLEZ MLOOP
ADLK JMPTBL ;else add value to jump table to
SACL DUMMY ;determine which TDOM to call
LAR AR7,DUMMY
ZALS *;acc now contain to place to jump
CALA
LARP AR7
LRLK AR7,MLOOPCONT;
OUT *,WARHOST
ZAC
SACL*
B MLOOP

Figure 4.1: Calculation Control Mechanism
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b. For Loop Equivalent

In order to implement many of the desired algorithms a for loop

mechanism is required. Figure 4.2 demonstrates one method of achieving a for loop

control. In this method, ARO is a countdown counter and AR1 and AR2 are used to

point to operands. Each time through the loop, the counter ARO is decremented. As

long as ARO is not zero, the program branches to NEXT41. When ARO is zero, the

program proceeds to the next instruction which branches past the arithmetic section.

This figure also illustrates the multiply and accumulate process. When a branch to

LOOP41: BANZ NEXT41,*-,AR1 ;ARE MAIN LOOP NEED, YES BRANCH
B DONE41,*,ARO ;NO, BRANCH TO REMAINDER

NEXT41: LT *+,AR2
MPYA *+
B LOOP41,*,ARO

DONE41: APAC

Figure 4.2: For Loop Equivalent

the arithmetic section occurs, the operand that AR1 points to is loaded into the T

register and AR1 is incremented. Next the operand that AR2 points to is multiplied

by the T register. The result is stored in the P register and AR2 is incremented. The

previous value of the P register is added to the accumulator. When the looping is

complete, the product in the P register is added to the accumulator.

c. FFT Bit Reversal

The bit reversal algorithm is implemented as a macro given in Fig-

ure 4.3. In this macro the reverse carry mode of indirect addressing is used. This

requires that ARO be loaded with the value of half of the FFT size. In the FFT

calculations, a real and an imaginary 16-bit word are stored in consecutive addresses.
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Since two words of storage are required for each sample, the half size in words of

storage is equal to the FFT size. The registers ARI and AR2 are initialized to point

to the real value of the first data element. AR3 is used as a countdown counter and

AR4 points to a storage location. The first step is to check if the pointer in ARI is

greater than the pointer in AR2. If this is the case, a branch to NOMOV is made. At

NOMOV the AR1 pointer is incremented twice. This points it to the next real value.

Between the BLEZ NOMOV= and BACK=, the exchange of values takes place using

the accumulator as temporary storage. At BACK= the FFT size is added to AR2

with reverse carry. The next step tests to see if the loop is complete. If so, then it

branches to FINISH; otherwise it branches to LOOP=.

2. Assembly Debugging

After an algorithm was written and assembled successfully, the next stage

was to debug the algorithm on the board. This was accomplished by inserting the pro-

gram to be tested into RESMON.ASM which stands for resident monitor. Note that

RESMON.ASM is a program that Ariel provides with the DSP-16 system. The com-

mands used by this program are iii [Ref. 4, Chapter 9]. In order to use RESMON.ASM

the origin of the test program must be placed after location 1024. Therefore any vari-

ables that would normally be in memory locations lower than 1024 must be relocated

for testing. We note that the test program must be physically inserted into the

RESMON.ASM because the assembly is non-relocatable and does not use a linker.

This means that, even for short test programs, one must always reassemble the 14,920

instruction words required by the monitor.

At this point, the PC side of the monitor can be started. The PC program is

called DSPBUG.EXE. Once this program initializes the board and loads the monitor

with the test program onto the board, the monitor commands and utilities can be used

to check the program execution. At this point in the verification, the best procedure is
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BITRVI: MACRO ;FIRST,BIAS,FFTSIZE,TEMPBUF

INITIALIZE AUXILIARY REGISTERS

LRLK ARO,$2 ;ARO IS LENGTH OF FFT
LRLK AR1,$O±$1 ;AR1 POINTS TO FIRST PT
LRLK AR2,$O+$1 ;AR2 POINTS TO FIRST PT
LRLJ( AR3,$2-1 ;LOOP CONTROL FFTSIZE - I
LRLK AR4,$3 ;TEMP BUFFER PTR
LARP AR4

LOOP=: SAR AR1,*
ZALS *

SAR AR2,*
SUBS *,AR1
BLEZ NOMOV=
ZALH *,AR2
ADDS *,AR1
SACL *+,o,AR2
SACH *+,O,AR1
ZALH *,AR2
ADDS *,AR1
SACL *+,O,AR2
SACH *-,

BACK=: MAR *BRO+,AR3 ;THIS IS NEEDED TO *BRO± ON AR2
BANZ LOOP=,*-,AR4
B FINISH=

NOMOV=: MAR *±
MAR *±,AR2
B BACK=

FINISH=:

Figure 4.3: FFT Bit Reversal
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to manually enter data points into the board's data RAM at the appropriate location.

The test data values should be small in number and provide results that are easy to

follow. Then the test program can be single stepped and the registers can be observed.

This procedure will identify incorrect logic and instruction usage. Additionally, the

numerical results at each stage can be followed. As errors are found, the corrections

are made to the program under test and the above procedure repeated.

After the program is tested using the above procedure, the test program

can be be separated into a stand-alone program. The stand-alone must be assembled

as a stand-alone program. Now a larger and more realistic set of data values can

be loaded using the PC interface functions explained in the following section. The

results can be returned to the PC and compared against known results. The known

results used in all cases were provided by Matlab. The FFT results (partial listing)

given in Table 4.3 shows the anticipated loss of precision as the number of stages

increased.

TABLE 4.3: FFT RESULTS COMPARISON

FFT Size Result Matlab DSP-16

2 Xo___t (0) -0.0383 +10.0000 -0.0383 +30.0000
I Xout(1) 1 0.0112 + jO.0000 0..0112 + 30.0000

8 [x,t (0) -0.2483 + jO.0000 -0.2483 + 0.0000

I xo0 ,t(1) 0.0412 - j0.0154 0.0410 - jO.0156
32 x,,t(0) -0.3409 + jO.0000 -0.3418 + j0.0000

xo,,t(1) -0.1413 + 30.1846 -0.1445 + 30.1826
128 xo,,t(O) -2.3580 + 30.0000 -2.3633 + j0.0000

xout(1) -0.4993 + 00.2542 -0.5195 + 00.2383
512 x~o,,(O) -8.2644 + jO.0000 -8.2969 + jO.0000

I xot(1) -1.1061 + 30.7113 -1.2031 + 0.6563
1024 xout(O) -18.4322 + 0.0000 

318.5000 +30.0000Xot(1) -0.8486 - 1.1209 -1.0938 - j1.2813
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3. Host Interface Software

One of the software packages that Ariel provides with the board is a set

of interface functions. A description of the functions and the arguments sent and

returned by the functions are given in [Ref. 4, Chapter 4]. The software version used

by this program is contained in DSP11MCL.LIB. In order to simplify the function calls

and structure them like a C function, a library of C interface functions was developed.

Figure 4.4 gives an example of one of the functions. The function arguments are

variables that change from function call to function call. Within the function these

arguments are stored in the appropriate structure member and then a call is made to

BOOL ExecDSP( int NumArg, int *argument)

{
BOOL ret = FALSE;
char buffer[39];
struct parms dcall;

dcall.fun = DDARR;
dcall.p2 = 0x3ffc ;
dcall.p3 = NumArg;
dcall.p6 = argument

if( ! dspl6(&dcall) )
{
sprintf( buffer, "DSP Error: Function %d, Return %d", dcall.fun,

dcall.retval );
ErrorMsg( buffer);
ret = TRUE;
I

return ret;
}

Figure 4.4: C Interface Function
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the dspl6 function contained in the Ariel library. If the dspl6 function return value

is zero, then an error occurred. In this case an error message is processed by the

ErrorMsg function and the variable "ret" is set to TRUE. In any case, the current

value of "ret" is returned to the calling function. A return value of TRUE means that

an error occurred in the function call while FALSE means no error. By using these

interface functions the steps needed to interface to the board can be easily achieved.

In order to use the same user-interface developed in Chapter III the function

calls to the DSP-16 version of the calculation functions must be the same as the PC

version developed in the section above. This can be accomplished by using the same

function name and argument list. The internal coding of the two functions bear

very little resemblance to one another. In the PC version the actual calculations

are performed while in the DSP-16 version only the setup is designed so that the

board can perform the calculations. An actual example of this setup is given in

Figure 4.5. The first stage of the setup is to ensure that the proper soft .';are is loaded

onto the board. In this case the software is in the file TDOM.HEX. The next step

is to allocate memory for the Q15 array and then convert the floating point array

to a Q15 array. If an error condition is noted during any function call to the board,

then the program will exit with an exit code of one. The next several steps serve to

download the data, pass to the board an indication of which algorithm to run and

any additional arguments needed for that algorithm, wait for the board to complete

the calculation, and upload the results. The results are then converted back to the

floating point representation. In this example the result was normalized and the

number of shifts needed to normalize it was also stored before the result was removed

from the accumulator of the TMS320C25. Both the normalized result and the shifts

are used in the format conversion formula to reduce the loss of precision.
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float CaISTEnergy( int WindowSize, float * )
f
float temp =0.0;
QFORMAT *qinput;
int i,arguments[] = f 1, 0 1;
static char *pszLoadFile = f "TDOM.HEX" 1;
arguments1] WindowSize;
if( iTypeDSP != TIMEDOMAIN)

if( LoadDSPWithReset( pszLoadFile)

exit(TRUE);

iTypeDSP = TIMEDOMAIN;

qinput =(QEORMAT *)Get1~em( WindowSize, sizeof(QFORMAT) )
for( i =0 ; i < WindowSize; i++)

qinput[i] = ftoql4(*X++);

if( PCtoDSP( WindowSize, qinput, TDOMLOADDATA)

exit(TRUE);

if( ExecDSP( 2, arguments)

exit(TRUE);

if( WaitForDSP())

exit (TRUE)-

if( DSPtoPC( 2, qinput, TDOMLOADDATA)

exit(TRUE);

temp = qtof(qinput[0], ( OxOO0l < (6+qinput[1])))
free(qinput);
return( temp )

Figure 4.5: DSP-16 Version of Calculation Function
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4. Interface Debugging

The debugging at this point has an added difficulty not present in most

programming environments. When an error occurs, is the error in the PC software or

in the DSP-16 software? One procedure that can help to reduce this uncertainty is to

write a dummy function to replace the library function DSP16. By using this dummy

function the PC software can be tested down to the board calls. If the procedure

outlined in the Assembly Debugging section is used to test the assembly programs,

then the algorithm can be tested. If an error occurs in this situation, the most likely

cause of the error is memory location assignments. Recall from the discussion of

the monitor (section B.2 of this chapter) it was mentioned that the actual memory

location used by various variables might have to change for testing procedures. At

this point the only solution is to carefully check all the memory location assignments.

This has been simplified by defining the locations in an "include file" for the PC and

a macro file for the board.

This chapter has presented the procedures for developing and interfacing the

calculation software for both the PC version and the DSP-16 version. With these

software packages and the user interface software packages, the complete program

can be assembled. If the DSP-16 version is linked in at assembly time, then the

program will be a DSP-16 version, otherwise the normal (PC) version will be linked

and the result will be a be a PC-only version of the program.
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V. CONCLUSIONS

The objectives of this thesis, namely to develop a DSP program that requires no

programming by the user and to be able to utilize the Ariel DSP-16 system as a pseudo

coprocessor, have been met. The common user-interface goal has been achieved. In

addition, the user interface has been found by the students to be quite user-friendly.

The final interface evolved over time based on feedback received from an EC4410

class that used early versions of the program. The ultimate proof of the common

user-friendly-interface can best be shown by actually running both versions of the

program. The algorithm package for the PC implements FFT algorithms of various

sizes, five different time domain calculations, and three different linear predictive

coding methods. The package for the DSP-16 has a complete interface package and

demonstrates the basic building blocks for all the algorithms. The package for the

DSP-16 has all the FFTs and time domain calculations implemented. Feedback from

the EC4410 class was very helpful in detecting bugs. The complete software package is

available on request from Department of Electrical and Computer Engineering, Code

62Tu, Naval Postgraduate School, Monterey, California 93943-5002. The following

sections present a discussion of observations made during this research and possible

further developments to improve on the work reported here.

A. OBSERVATIONS

1. TMS320C25 Limitations

The size of onboard processor RAM determines the largest window size

that can be used. Window sizes larger than the amount that can be accommodated

by the onboard processor RAM require internal to external data RAM swapping or
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total use of external data RAM. Either of these options greatly slows the throughput.

For this processor the maximum window size which aoes not require any of these two

options is 512 real words or 256 complex words. The remaining 32 words are reserved

for overhead.

Another difficulty is the loss of precision during stages of multiplications.

If, for an FFT, the window size is chosen as 256 due to RAM considerations, then

the result automatically has a loss of eight bits of precision. There are ways to

overcome this problem. One method is to normalize the intermediate results after

every stage of multiplication. This method requires twice the amount of RAM and

the normalization reduces throughput considerably. Another method is to use an

IEEE floating point representation for the calculations. For the single precision IEEE

floating point representation, the storage required for each sample is four words [Ref.

8, pages 245-268]. Note that this is twice the normal storage for a single precision

number. For this method, therefore, four times the initial RAM is required and

the throughput will again be reduced. The alternative to more RAM would be a

corresponding window size reduction.

2. DSP-16 Limitations

As previously mentioned, the DSP-16 has only 16K words of external RAM

that can be used for program and/or data storage. For our implementation, the

limitation is only for FFT calculations, but nevertheless is a significant limitation.

Initially. the 256-, 512-, and 1024-point FFTs were to use a 256-point FFT subroutine

as the basic building block. After assembling the subroutine, it became clear that it

was not possible as the subroutine required 21,776 words of storage. Next a 128-point

FFT subroutine was tried. The assembled output required 9194 words. However,

when the code to perform the 128, 256, 512, and 1024 FFTs was added, the total size

was 12680 words. Since the control overhead is only one word, it is not possible to
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fit this 12680 word program together with 1024 complex words of data and control

overhead in the available RAM. In order to fit the 12680 word program in program

RAM, the GREG register must be set to F8H. With this GREG setting and one

control word, there is only 2047 words of RAM left for data which is one word short

of the required 2048 words of data RAM needed. The final solution was a 64 point

FFT subroutine. This requires considerable amounts of data transfers and therefore

reduces the system throughput. Since the TMS320C25 can address upto 64K words

of program memory and 64K words of data memory, the limitation of 16K words for

both program and data RAM imposed by the board is not advisable.

3. Assembler and Linker

Since the assembler provided by Ariel is a non-relocatable type and there-

fore does not require a linker, a source code module had to contain all the required

instructions. This required continual reassembly of large sections of code that were

already debugged. The assembler sold by Texas Instruments for this processor (and

widely used) is a relocatable type with a linker. This seems like a more reasonable

approach to program development.

B. FURTHER DEVELOPMENTS

There are several improvements that are desirable and areas that need further

work. The first improvement is for the user's benefit. In the present form, the

program will give an error message, if the entered value is not in an acceptable

range for integer and real data entry prompt. The entry functions can be changed

so that the acceptable values are displayed at the bottom of the screen when the

entry prompt is displayed. The error message can still be used to alert the user to

an invalid entry. The next improvement concerns the output display for multiple

window FFTs. Instead of dispLying one window at a time, based on user entry, all
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windows could be displayed at one time in a 3-D plot where the third axis is time.

Although the programming of a 3-D plotting function is no simple matter, when a

plotting function of this type is available, the present display function can easily be

changed to incorporate the new plotting function.

The last two changes deal with the DSP-16 version only. In the DSP-16 version

of the program, the non-real-time LPC algorithms are still performed by the PC.

These algorithms need to have assembly versions developed and then interfaced with

the PC as has been done for the FFT and time domain calculations.

The last change is to step from non-real time calculations to (near) real-time

calculations. The sections of assembly code that actually perform the calculations

should need no modification, but the control loop would need to be totally changed.

As already has been pointed out however, the ability of this system to perform real-

time FFTs of sizes above 64 points is questionable because of inherent hardware

limitations.
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